
Running head: NONLINEAR LONGITUDINAL MODELS 1

This article has been accepted for publication in Structural Equation Modeling: A

Multidisciplinary Journal Published by Taylor & Francis

On the Estimation of Nonlinear Mixed-Effects Models and

Latent Curve Models for Longitudinal Data

Shelley A. Blozis

University of California, Davis

Jeffrey R. Harring

University of Maryland

Address correspondence to: Shelley A. Blozis, Psychology Department, University of

California, Davis, One Shields Ave, Davis, CA 95616. 530-754-9457. email:

sablozis@ucdavis.edu.



NONLINEAR LONGITUDINAL MODELS 2

Abstract

Nonlinear models are effective tools for the analysis of longitudinal data. These models

provide a flexible means for describing data that follow complex forms of change. Exponential

and logistic functions that include a parameter to represent an asymptote, for instance, are

useful for describing responses that tend to level off with time. There are forms of nonlinear

latent curve models and nonlinear mixed-effects model that are equivalent, and so given the

same set of data, growth function, distributional assumptions, and method of estimation, the

two models yield equivalent results. There are also forms that are strikingly different and can

yield different interpretations for a given set of data. This paper discusses cases in which

nonlinear mixed-effects models and nonlinear latent curve models are equivalent and those in

which they are different and clarifies the estimation needs of the different models. Examples

based on empirical data help to illustrate these points.

Keywords: longitudinal data; nonlinear mixed–effects models, nonlinear latent curve models;

structured latent curve models
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On the Estimation of Nonlinear Mixed-Effects Models and

Latent Curve Models for Longitudinal Data

Longitudinal models are essential for the understanding of psychological and behavioral

measures that are studied over time. Two major statistical frameworks for longitudinal data

analysis in the behavioral sciences are latent curve models and mixed-effects models. Both

have been developed to handle response data measured using different scales of measurement,

including categorical data, and both can define growth according to many different functional

forms. Nonlinear latent curve models and nonlinear mixed-effects models in particular provide

a means for describing variables that follow complex forms of change, such as multiphase

change (Cudeck & Klebe, 2002; Kohli, Hughes, Wang, Zopluoglu, & Davison, 2015; Ram &

Grimm, 2007). Importantly, both frameworks can make use of growth functions that are

straightforward in their interpretation and give a parsimonious way of representing complex

forms of change (Cudeck, 1996; Fitzmaurice, Laird, & Ware, 2004). To clarify, nonlinear

latent curve models and nonlinear mixed-effects models are models for which the growth

function that is used to describe change in the response includes one or more coefficients that

enter the function in a nonlinear, or non-additive, way (see the Appendix for a discussion on

the distinction between linear and nonlinear parameters of a growth model). Examples of

nonlinear latent curve models are given in Browne (1993), Browne and Du Toit (1991),

Grimm, Ram, and Hamagami (2011), Laursen, Little, and Card, (2012), and Meredith and

Tisak (1990); examples of nonlinear mixed-effects models using nonlinear growth functions

are given in Pinheiro and Bates (2000) and Davidian and Giltinan (1995, 2003).

Nonlinear mixed-effects models have been given a great deal of attention in the statistical

and methodological literature in the past few decades, and many articles and books are devoted
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to theoretical developments and estimation approaches (Davidian & Gallant, 1993; Davidian &

Giltinan, 1995, 2003; Lindstrom & Bates, 1990; Littell, Stroup, Milliken, Wolfinger, &

Schabenberger, 2006; Pinheiro & Bates, 1995, 2000; Vonesh, 1996; Vonesh & Chinchilli,

1996). Relatively less attention has been given to nonlinear latent curve models, although early

theoretical work on these models occurred within approximately the same time frame (Browne,

1993; Browne & Du Toit, 1991; Meredith & Tisak, 1990). These two nonlinear modeling

approaches for the analysis of longitudinal data can differ in important ways, and

consequently, can differ in their needs for estimation. Specifically, there is a version of a

nonlinear mixed-effects model (i.e., a partially nonlinear mixed-effects model [Davidian &

Giltinan, 1995]; a.k.a. a conditionally linear mixed-effects model [Blozis & Cudeck, 1999])

and a version of the nonlinear latent curve model that are equivalent, and thus it can be shown

that the estimation requirements are equivalent. There is also a version of a nonlinear latent

curve model, namely the structured latent curve model, that differs appreciably from a

nonlinear mixed-effects model, and thus the estimation requirements are different. A structured

latent curve model in particular offers a unique way of describing longitudinal data, and for

some types of longitudinal data, can be preferred over a nonlinear-mixed effects model (Blozis

& Harring, 2015). The purpose of this paper is to highlight the similarities and differences

between these two important longitudinal frameworks and to clarify their estimation

requirements.

The remainder of this paper is as follows: First, nonlinear mixed-effects models and the

nonlinear latent curve model that was introduced by Meredith and Tisak (1990) are reviewed.

It is then shown how a particular restriction to a nonlinear mixed-effects model results in a

model that is equivalent to the nonlinear latent curve model. Specifically, a partially nonlinear
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mixed-effects model is shown to be equivalent to Meredith and Tisak’s nonlinear latent curve

model. Next, the structured latent curve model, a special form of a nonlinear latent curve

model introduced in Browne (1993) and Browne and Du Toit (1991), is described and

contrasted with these models. Estimation requirements of the different models are discussed.

Due to its relevance in this discussion, a population-average models is briefly contrasted with

the models highlighted here because its distinction from these models helps further

understanding of the different options in nonlinear longitudinal models. To aid with the

discussions an empirical data set is presented. Recommendations are given for fitting these

models with illustrations using SAS statistical software given its flexibility in estimating these

different longitudinal models.

Nonlinear Mixed-effects Models and Nonlinear Latent Curve Models

Nonlinear mixed-effects models. Nonlinear mixed-effects models are subject-specific

models in which the individual is the focus of study, and so a model for growth is defined at

the individual level with one or more of the growth coefficients being specific to the individual

(Davidian & Giltinan, 1995, 2003). Many resources provide examples of nonlinear

mixed-effects models that are based on a variety of growth functions (Cudeck, 1996;

Lindstrom & Bates, 1990; Pinheiro & Bates, 2000). The responses of all individuals in the

population are assumed to follow the same growth form, such as assuming that the responses

of all individuals follow the same exponential growth function, but the coefficients that

describe change in the response can be specific to each individual. Assuming, for instance, the

responses of an individual follow a negatively accelerated exponential function over time, a

nonlinear mixed-effects model for yti can be given by
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yti  1i − 1i − 0iexp−2iTimeti  eti     (1)

where yti is the response at Timeti for individual i, 0i is an individual’s expected response at

Timeti  0, 1i is an individual’s potential response, and 2i combined with values of Time

dictates the nonconstant rate of change across time. In the example presented in (1) each of the

coefficients is assumed to be a combination of a fixed effect and a random effect, although it is

not a requirement of the model that every coefficient has both a fixed effect and corresponding

random effect. In (1), for instance, 0i  0  b0i, where 0 is the fixed intercept common to

all individuals, and b0i is the corresponding random effect specific to individual i. Finally, the

individual and time-specific residual for the model is given by eti. This subject-specific model

allows the different features that describe change in a response to be unique to the individual,

making it possible for the responses of individuals to change at different rates and to have

different response levels, both at Timeti  0 and with regard to the potential level. The fixed

coefficients of the model represent the typical characteristics of change across the population.

For example, the fixed rate of change 2 represents the average of the change rates across

individuals. Thus, one can think of the fixed effects of a nonlinear mixed-effects model as

representing the typical parameter values (Cudeck, 1996; Davidian & Giltinan, 1995, 2003).

Within individuals, the set of residuals e i  e1i, . . . ,eni 
′, where ni is the number of

observations for person i, is assumed to be multivariate normal with expected value equal to

zero and covariance matrix Θi:

e i  N0,Θi 

where Θi is a symmetric matrix of order ni so that Θi can vary by individual. For instance, in
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situations in which individuals are measured at different points in time or possibly a different

number of times, allowing Θi to vary by individual can allow for such differences. With regard

to the particular structures assumed for Θi, perhaps the most common assumption is that the

residuals are independent with constant variance across time so that Θi  2Ini , where 2 is

the common variance, and Ini is an identity matrix of order ni. If the growth model adequately

accounts for the dependencies in the data, then the residuals would be expected to be

independent across time. Further, if the random coefficients of the growth model account for

individual differences in the responses, then the residuals might also be expected to have

constant variance across time. In practice, it is recommended that alternative covariance

structures be considered for a given problem to evaluate assumptions about the residuals. For

instance, even after accounting for change in the responses by fitting a growth model, some

dependencies in the residuals may remain and a covariance structure that assumes correlations

between the residuals may be more appropriate. In any case, considering different covariance

structures for the residuals can be useful in evaluating and interpreting a nonlinear

mixed-effects model (Harring & Blozis, 2014).

At the population level the nonlinear mixed-effects model is given by (cf: Davidian &

Giltinan, 1995)

i  g,bi     (2)

where g is a function that depends on a set of p fixed effects   1, . . . ,p ′ that are common

to all individuals and a set of k individual-specific random effects bi  b1i, . . . ,bki ′. The

random effects bi are assumed to be multivariate normal with expected value equal to zero and

covariance matrix :
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bi  N0,

where  is a symmetric matrix of order k.

In its simplest form, the function g in (2) denotes the sum of fixed and random effects, and

the expected value of i is equal to the fixed effect : Ei  . In these cases, the fixed

effects represent the averages of the individual-level coefficients of the growth model, and so

the growth function defined by the fixed effects yields the typical curve (Davidian & Giltinan,

2003). It is important to note that the typical curve is not the same as the curve of the average

response. Indeed, the nonlinear mixed-effects model does not specify a model for the average

response. Instead, the population-level model is a model for the individual-level coefficients as

in (2). The population-level model can also be expanded to include person-level attributes to

account for variation in the random effects, with possibly a different set of predictors used to

address variation in each of the random effects. In these latter situations, the random effects are

conditional on person-level attributes.

Nonlinear latent curve models. Meredith and Tisak (1990) develop the framework for a

class of models known as latent curve models. For the sake of the discussion here and without

loss in generality, we assume that all individuals in a sample are observed according to the

same points in time: Time1, . . . ,Timen where n is the number of observations for all

individuals. Under a latent curve model, an individual response is assumed to be decomposable

into a sum of basis functions and error:

yi  i  e i     (3)

where  is a matrix of the basis functions assumes to be common across individuals of a
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population, i is a set of individual-specific weights, and e i is the set of errors. Among

different versions of the latent curve model that were presented in their article, one version was

based on a growth function that included a nonlinear parameter. Specifically, an

individual-level model was given that was based on a negatively accelerated exponential

function:

yti  1i − 1i − 0iexp−Timet  eti     (4)

where 0i is an individual’s expected response at Timet  0, and 1i is an individual’s potential

response (Meredith & Tisak, 1990, p 117). The nonlinear coefficient  was assumed to be

fixed across the population. So that the model in (4) follows the form of the latent curve model

in (3), a matrix of basis functions  and the random weight vector are defined as (cf: Browne,

1993)

 

exp−Time1 1 − exp−Time1

 

exp−Timen 1 − exp−Timen

    (5)

and

i 
0i

1i

,

respectively, where  is evaluated according to Time1, . . . ,Timen. Thus, the individual-level

model in (4) can be equivalently expressed as a sum of basis functions weighted by

individual-specific coefficients:
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yti  exp−Timet0i  1 − exp−Timet1i  eti     (6)

In the nonlinear latent curve model in (6), the two coefficients 0i and 1i enter the model

in a linear, or additive, way, and both are assumed to be a sum of a fixed and a random effect.

That is, let 0i  0  z0i and 1i  1  z1i, where 0 and 1 are the fixed intercept and

asymptote, respectively, and z0i and z1i are the corresponding random effects. In contrast to 0i

and 1i, the rate parameter  is fixed across the population and enters each of the basis

functions in a nonlinear way. Thus, in this model, only the linear parameters are random and

the nonlinear parameter is fixed. Finally, the time-specific residual is given by eti. Within

individuals, the residuals in e i  e1i, . . . ,eni 
′ are assumed to be multivariate normal with

expected value equal to zero and covariance matrix Θ:

e i  N0,Θ

where Θ is a symmetric matrix of order n. Similar to the nonlinear mixed-effects model,

different structures may be considered for Θ.

The population level model describes the expected value of the response evaluated

according to time and is assumed to have the same functional form as that assumed for the

individual-level model. For instance, assuming the exponential growth function in (4) that was

assumed at the individual level, the expected value of yi under the model is

Eyi          (7)

where  is defined in (5) and   0,1 ′. In the population level model, all coefficients are

fixed and describe the mean response across time. That is, 0 is the intercept of the mean

response, 1 is the potential mean response, and  governs the rate of change in the mean
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response. Indeed, the model for the mean response ("curve of the averages") is equal to the

average of the subject-specific models ("average of the curves"), a quality of a model that

Keats (1983) (also see Singer & Willet, 2003) refers to as dynamic consistency. As in the

individual model of (4), the intercept and asymptote parameters of the mean function enter

linearly, and the rate parameter enters nonlinearly. Also at the population level, the set of

random weights zi is assumed to be multivariate normal with expected value equal to zero and

covariance matrix :

zi  N0,

where  is a symmetric matrix of order k, and k is the number of random weights. Given the

distributional assumptions for e i and zi and assuming independence between them, the mean

structure is defined in (7) and the covariance structure is

  ′  Θ,

where the orders of both  and  are n.

A first-order Taylor expansion. Technically the latent curve model of Meredith and

Tisak (1990) is based on a first-order Taylor expansion defined as a linear combination of the

first-order partial derivatives of a target function taken with respect to the coefficients of the

function but for which the expansion is done only with respect to the coefficients that enter the

function in a linear way (see Blozis & Harring, 2015). For the exponential function in (4), the

first-order partial derivatives of the function evaluated at Timet are

∂
∂0i

1i − 1i − 0iexp−Timet  exp−Timet
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and

∂
∂1i

1i − 1i − 0iexp−Timet  1 − exp−Timet.

As noted earlier, these derivatives defined the basis functions of the matrix  in (5). The basis

functions are then weighted by the set of random weights i in (6). From this it is clear that the

latent curve model defines the response as a decomposable sum of a set of basis functions and

error.

Model interpretation. The fixed coefficients in  and  , namely 0 and 1, represent the

typical characteristics of change across the population for the two parameters that can vary

across individuals. Conversely, the rate parameter  is fixed across the population, so the

model does not allow for the rate parameter to differ across individuals. Similar to the

nonlinear mixed-effects model in (1), one can think of the fixed effects of the nonlinear latent

curve model as representing the typical function parameter values. It is also true, however, that

the fixed effects of a nonlinear latent curve model can be interpreted as the features that

describe change in the mean longitudinal response, that is, the response averaged at each

measurement occasion. Indeed, the individual-level model and the population-level model of a

nonlinear latent curve model assume that both the mean response and the individual responses

follow the same functional form. This is not necessarily true of a nonlinear mixed-effects

model in which all of the growth coefficients, including those that enter a function in a

nonlinear way, vary across individuals. Under a nonlinear mixed-effects model most generally,

there is no requirement that the averaged response follow the same functional form as that

assumed for the individuals. In fact, a nonlinear mixed-effects model does not include a direct

specification of the averaged response (Davidian & Giltinan, 1995, 2003). That is, the
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population-level model of a nonlinear mixed-effects model concerns the coefficients that

define the individual-level model, as given in (2). Similar to nonlinear mixed-effects models, a

variety of growth functions can be used to define a latent growth model of (3). For the latent

curve model, however, there is the restriction that any growth coefficient that goes into the

function in a nonlinear manner be fixed, as described earlier.

Equivalent Model Forms

A particular form of the nonlinear mixed-effects model is one in which the random effects

only enter the function in a linear way and fixed effects enter in a linear or nonlinear way. This

is known as a partially nonlinear mixed-effects model (Davidian & Giltinan, 1995) (a.k.a. a

conditionally linear mixed-effects model [Blozis & Cudeck, 1999]) that differs from a fully

nonlinear mixed-effects model that allows for any parameter of a growth function, linear or

nonlinear, to vary across individuals. In a partially nonlinear mixed-effects model, the

interpretation of the growth coefficients can be done in the same fashion as the nonlinear latent

curve model of Meredith and Tisak (1990). That is, the growth coefficients of a partially

nonlinear mixed-effects model can be interpreted as the typical coefficients across individuals,

as well as the coefficients that describe the average response. To illustrate this, assume that a

partially nonlinear mixed-effects model is used to describe longitudinal data using the

exponential growth function that was used in (1) but where the rate parameter is fixed across

individuals:

yti  1i − 1i − 0iexp−2Timeti  eti     (8)

Letting 0i  0i, 1i  1i and   2, the individual-level model of the nonlinear latent

curve model in (4) is expressed in the same manner as the individual-level model of the
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partially nonlinear mixed-effects model in (8). As in (4), the individual-level coefficients of the

model in (8) are sums of a fixed effect and a random effect: 0i  0  b0i and 1i  1  b1i,

where the expected values of the coefficients are equal to the fixed effects: E0i   0 and

E1i   1. Thus, the intercept and asymptote vary across individuals, and the fixed effects

0 and 1 represent the typical growth coefficients. The population-level model is a model for

the expected value of the response, analogous to the nonlinear latent curve model:

Eyti   t  1 − 1 − 0exp−2Timet     (9)

Letting 0  0, 1  1, and   2, the population-level models of the partially nonlinear

mixed-effects model in (9) and the nonlinear latent curve model in (4) are equivalent

expressions. As for the fixed effects of the nonlinear latent curve model, the fixed effects of

the partially nonlinear mixed-effects model can also be interpreted as the coefficients that

describe the mean response.

It follows that a partially nonlinear mixed-effects model can also be expressed using a

first-order Taylor expansion. At the individual level, let

yi  i
∗  e i

where  is defined as it was in (5) and i
∗  0i,1i ′. At the population level,

Eyi     ∗     (10)

With ∗ in (10) being equal to  in (7), the mean structure of a partially nonlinear

mixed-effects model is equivalent to that of a nonlinear latent curve model. The covariance

structure for both models is
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  ′  Θ     (11)

with the dimensions of  and  equal to n.

It is important to note that the shared interpretation of the fixed coefficients of a nonlinear

latent curve model and a partially nonlinear mixed-effects model is also shared with those of

linear latent curve models and linear mixed-effects models (Davidian & Giltinan, 1995, 2003).

That is, if the random coefficients of an individual-level model can only enter the model in a

linear way, even if fixed nonlinear coefficients are included in the growth model, then the

model’s fixed coefficients have this dual interpretation in describing the typical coefficients

and the coefficients of the mean response. Thus, these models possess the property of dynamic

consistency.

Estimation

The nonlinear latent curve model and the partially nonlinear mixed-effects model are

linear with respect to the random coefficients. Nonlinear coefficients are fixed. A consequence

of this is that a closed-form analytic expression for the marginal mean is available, similar to

linear mixed-effects models and linear latent curve models (Davidian & Giltinan, 1995). First,

let  represent the set of parameters of either a partially nonlinear mixed-effects model or a

nonlinear latent curve model. Specifically,  includes the parameters of the mean structure and

those of the covariance structure. The mean and covariances structures under either model can

then be defined as functions of : i and i. Assuming more generally now that the

number of observations and the timing of observations could vary across individuals, the

marginal density of a normally distributed response under a partially nonlinear mixed-effects

model and a nonlinear latent curve model can be written equivalently as
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yi  Ni,i

A loglikelihood function can then be written as

lnL;y1, . . . ,yN  C −
1
2 ∑

i1

N

ln|i|  yi − i
′i−1yi − i     (12)

where C is a constant that is independent of . This form of a loglikelihood function can be

evaluated using techniques used to fit linear mixed-effects models and linear latent curve

models (Jennrich & Schluchter, 1986).

Maximum likelihood (ML) estimates of a nonlinear latent curve model and a partially

nonlinear mixed-effects model may be obtained using a software program for nonlinear

mixed-effects models, such as SAS PROC NLMIXED. Using NLMIXED, one approach to

ML estimation is to apply a first-order Taylor series method of estimation by using the

‘METHODFIRO’ option. The theory of this linearization method is described in Beal and

Sheiner (1982). A more general use of a first-order Taylor series expansion is to approximate a

nonlinear function. This approach has been used to approximate a nonlinear function under a

fully nonlinear mixed-effects models, that is, a nonlinear mixed-effects model in which a

random effect enters the function in a nonlinear manner (as was given in (1)). If, however, a

function is strictly linear in the random effects (as in a partially nonlinear mixed-effects model

or a nonlinear latent curve model), the result of the first-order linearization is a direct

decomposition of the nonlinear function defined as a product of basis functions (possibly

defined by fixed nonlinear coefficients) and a set of weights. Thus, although a first-order

Taylor expansion can be used to approximate a nonlinear function, if a growth model is strictly

linear in the random effects, the first-order Taylor expansion is equal to the original function,
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and thus, is not an approximation. Another approach to obtaining ML estimates is to use a

numeric approximation method. The default estimation method for PROC NLMIXED is an

adaptive Gaussian quadrature method that is describe in Pinheiro and Bates (1995). By using

the procedure’s default method of estimation, an approximate marginal likelihood function is

evaluated numerically. Thus, it is important to note that these two methods of estimation, the

first-order linearization method and the numeric approximation method, will provide

equivalent results if a model is strictly linear in the random effects (Davidian & Giltinan,

1995). In other words, regardless of which of these two methods of estimation are chosen, the

two methods will yield the same results for models that possess this quality.

Empirical Example

The nonlinear latent curve model can be shown to give equivalent results to that from a

partially nonlinear mixed-effects model given the same distributional assumptions for a set of

data. This is done using a subset of the data presented in Blozis (2004). The data studied here

are performance scores on a quantitative learning task for n  228 study participants. The

scores are the median response times for each of 12 trial blocks. Trial blocks are coded

t  0, . . . , 11 ′ so that the intercept of the model is interpreted as the performance level in the

first trial block. Data for a subset of 20 individuals are shown in Figure 1. A negatively

accelerated exponential function was used in Blozis to describe the learning responses across

trial blocks and is used here for this example. Specifically, the nonlinear latent curve model in

(4) was first estimated using the first-order linearization method in SAS PROC NLMIXED

with the following syntax:

PROC NLMIXED DATAqrtdata METHODFIRO GCONV0;
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TITLE1 ‘Nonlinear latent curve model of Meredith & Tisak 1990’;

PARMS a016 a18 gamma.7 var012 cov101 var110 s2e3;

theta0a0z0; theta1a1z1;

basis01-exp(-gamma*t); basis1exp(-gamma*t);

predv theta0*basis0  theta1*basis1;

MODEL qrt ~NORMAL(predv,s2e);

RANDOM z0 z1 ~NORMAL([0,0], [var0,cov10,var1]) SUBJECTsubid;

RUN;

In the syntax for fitting the nonlinear latent curve model, the person-specific weights are

defined as sums of fixed effects and random effects: theta0  a0  z0 and theta1  a1  z1. The

fixed rate parameter is given by gamma. The basis functions of the matrix  in (5) are defined

by basis0 and basis1. The predicted response, denoted by predv, is defined as the weighted

sum of the basis functions as in (6); that is, each column of the basis functions matrix is

weighted by its respective individual-specific weight. The observed response, denoted by qrt,

is assumed to be normally distributed with predicted value predv and a residual variance s2e.

By default, PROC NLMIXED assumes that the time-specific residuals are independent

between individuals, as well as between occasions, with constant variance. The person-specific

weights z0 and z1 are assumed to be bivariate normal with means equal to 0 and symmetric

covariance matrix defined by the elements var0, cov10, and var1, where var0 is the variance of

the first random weight, var1 is the variance of the second random weight, and cov10 is their

covariance. The nonlinear latent curve model was also fit using the default estimation method

of adaptive Gaussian quadrature by removing the METHODFIRO option.
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To fit a partially nonlinear mixed-effects model using the exponential function to define

the individual response in (8), PROC NLMIXED can be used with the following syntax, first

using the first-order linearization method (METHODFIRO) and again using the default

estimation method of adaptive Gaussian quadrature:

PROC NLMIXED DATAqrtdata METHODFIRO GCONV0;

TITLE1 ‘partially nonlinear mixed effects model’;

PARMS B016 B18 B2.7 var012 cov101 var110 s2e3;

theta0iB0b0i; theta1iB1b1i;

predv theta0i - (theta0i - theta1i)*exp(-B2*t);

MODEL qrt ~NORMAL(predv,s2e);

RANDOM b0i b1i ~NORMAL ([0,0], [var0, cov10, var1]) SUBJECTsubid;

RUN;

In the syntax for fitting the partially nonlinear mixed-effects model, the coefficients

theta0i and theta1i are defined as sums of fixed effects and random effects: theta0i  B0b0i

and theta1i  B1b1i. The fixed rate parameter is given by B2. The predicted value, given by

predv, is defined directly by the exponential function as defined in (8). The response, denoted

by qrt, is assumed to be normally distributed with predicted value predv and residual variance

s2e. Specifically, the trial-specific residual is assumed to be independent between individuals

and between trials with constant variance s2e. The random-effects, b0i and b1i, are assumed to

be bivariate normal with means equal to 0 and covariance matrix defined by the elements var0,

cov10, and var1, where var0 is the variance of the first random effect, var1 is the variance of

the second random effect, and cov10 is their covariance.
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The results from fitting the two models to the quantitative response time data using the

two methods of estimation are given in Table 1. Estimates of the two models using the

first-order linearization method are given in the first two columns of results. ML estimates of

the two models obtained using the default estimation method, adaptive Gaussian quadrature,

are given in the last two columns. As shown, the estimated fixed-effects and the estimated

variance and covariance parameters of the random effects and the variance of the residuals are

equivalent to at least 4 decimal places across models and estimation methods, as are the

estimated standard errors and indices of model fit. In summary, a nonlinear latent curve model

and a partially nonlinear mixed-effects model, both of which include a nonlinear parameter

that is strictly fixed across the population, yield equivalent models.

Structured Latent Curve Models

A form of a nonlinear latent curve model that differs from the nonlinear latent curve

model of Meredith and Tisak (1990) and the nonlinear mixed-effects model is a structured

latent curve model. Unlike the nonlinear latent curve model of Meredith and Tisak, a

structured latent curve model allows for individual differences with regard to all model

coefficients, as will be described later. Under a structured latent curve model the first step is to

specify a function that is to describe the mean longitudinal response. An individual-level

model is subsequently defined by a first-order Taylor expansion taken with respect to the

parameters of the mean growth function and linearly weighted by a set of individual-specific

weights (Browne, 1993; Browne & Du Toit, 1991). Thus, the structured latent curve model and

the nonlinear latent curve model are both defined using a first-order Taylor expansion, and as

was shown previously, the partially nonlinear mixed-effects model can also be expressed using

this expansion. The structured latent curve model defines a specific function for the mean
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response, and as a result, the fixed coefficients of the model are interpreted as the effects that

describe change in the mean response. This is a notable difference between a structured latent

curve model and a fully nonlinear mixed-effects model. As described earlier for a fully

nonlinear mixed-effects model, no assumption is made about the functional form of the mean

response. Only the individual responses are assumed to follow a specific function and the

population-level model describes the individual-level coefficients across the population.

An important aspect of a structured latent curve model that makes the model different

from a nonlinear mixed-effects model (either fully nonlinear or partially nonlinear) and a

nonlinear latent curve model (as defined in Meredith & Tisak, 1990) concerns the

interpretation of the individual-level model. As described earlier, the individual responses

under a nonlinear mixed-effects model, as well as the nonlinear latent curve model, are all

assumed to follow the same functional form, such as the exponential function given in (3). So

the interpretation of the model at the individual level depends on a common function and the

particular coefficients that characterize the responses for the individual. Under a structured

latent curve model, the individual-level model has a different interpretation. Specifically, the

individual-level model of a structured latent curve model is defined by a first-order Taylor

expansion taken with respect to all of the parameters of the mean function, including those that

enter the model in a nonlinear way. The particular shape of an individual curve is dictated by

the individual-specific weights that are applied to the set of common basis functions from the

Taylor expansion, and as a result, an individual curve need not follow the same form as the

mean response and may differ in form relative to the curves of other individuals (Browne,

1993; Browne & Du Toit, 1991). As illustrated in Blozis and Harring (2015), the structured

latent curve model can result in individual curves that differ markedly from each other and
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from the averaged response. For instance, in an empirical example presented in Blozis and

Harring, the mean response for a set of data was assumed to follow a monotonic function that

included an asymptote. Although many of the individual curves in the sample followed this

general form, there were several individuals whose response patterns differed, including

individuals whose curves were not monotonic. This is a notable aspect of the structured latent

curve model because it represents a greater degree of flexibility in how a model can be used to

account for individual differences in change, although this also means that the interpretation of

the individual curves is unlike the individual-level model of fully nonlinear and partially

nonlinear mixed-effects model and the nonlinear latent curve model of Meredith and Tisak

(1990).

The structured latent curve model is described in detail here. To help in the description,

the empirical learning data that were presented earlier are used again. As was done in the

previous examples, the trial blocks were coded as ti  0, . . . , 11 ′ so that the intercept of the

model represented the performance level in the first trial block. Under a structured latent curve

model, the mean response is assumed to follow a particular function. Here, the mean response

at trial t, t, is assumed to follow a logistic growth model:

t  f, t  01

0  1 − 0exp−2t
    (13)

where 0 is the expected mean performance level at the first trial block, 1 is the expected

mean potential level, and 2 is a parameter that along with time governs the rate of change in

the mean response. Given that the model for the mean response is at the population level, the

coefficients of the function, 0, 1 and 2, are fixed. Unlike the exponential function in (3) in

which two of the coefficients entered the function in a linear way and one coefficient entered
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in a nonlinear way, the logistic function in (13) includes parameters that all enter the target

function in a nonlinear way. The logistic growth function simply represents another possible

model to describe the learning responses.

At the individual level, the response yti at trial t is defined by a first-order Taylor

expansion of the mean function f, t with random weights applied to the basis functions.

Assuming that the mean function is that defined in (13), the expansion that defines the

individual-level model is

yti  f, t  z0if0
′  z1if1

′  z2if2
′  eti     (14)

where f0
′ , f1

′ , and f2
′ are the first-order partial derivatives of the mean function f, t in (13)

taken with regard to each of the coefficients in   0,1,2 ′, evaluated according to trial t,

and weighted by individual-specific weights, z0i , z1i and z2i. Let the kth partial derivative of

f, t be denoted by ∂f,t
∂k

. The first-order partial derivatives of (13) taken with respect to 0,

1 and 2 are (cf: Browne, 1993)

∂f, t
∂0

 f0′ 
0 − exp−2tf, t

0  1 − 0exp−2t
    (15a)

∂f, t
∂1

 f1′ 
1 − 1 − exp−2tf, t
0  1 − 0exp−2t

    (15b)

∂f, t
∂2

 f2′ 
1 − 0texp−2tf, t
0  1 − 0exp−2t

.     (15c)

Note that the basis functions of (15a)-(15c) are common across all individuals in the

population, and so, are functions only of fixed effects. In the individual level model in (14),
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these nonlinear basis functions are weighted by the random effects z0, z1, and z2, all of which

enter the individual-level model in a linear way. The expected values of these random effects

are assumed to be zero (e.g., Ez0i   0) so that the expected value of the individual response

is assumed to be equal to the mean function:

Eyi     f, t.

Thus, under a structured latent curve model, the mean response can be described by a

function that possibly includes all nonlinear parameters, as in (13), all of which are fixed. At

the individual level, the model is defined by the first-order Taylor expansion with weights z0,

z1, and z2, that are both random across individuals and enter the individual-level model in a

linear way. This individual–specific weighting of the basis functions that defines the

individual-level model allows for individual differences with respect to each aspect of change.

That is, each of the basis functions represents change in the mean response with respect to the

particular features that describe the mean response, and the individual-specific weights allow

for individuals to differ with regard to each of these features. This aspect of the structured

latent curve model distinguishes it from the nonlinear latent curve model of Meredith and

Tisak (1990) in which individuals can vary only with regard to the parameters of the mean

function that enter in a linear way.

The individual-specific model in (14) is not in the strict form of the latent curve model of

Meredith and Tisak (1990). As described in Browne (1993, p. 1977), the structured latent

curve model follows the same form as the latent curve model of Meredith and Tisak by making

additional assumptions about the model. To describe these assumptions, the empirical learning

example is again used. First, let   1, . . . ,12 ′ be the set of mean responses across trial
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blocks. Further, let the basis functions in (15a), (15b) and (15c) form the columns of the matrix

 :

  ∂f,t
∂0

∂f,t
∂1

∂f,t
∂2

where   , t. Under a structured latent curve model, the mean function is assumed to be

invariant to a constant scaling factor (see Shapiro & Browne (1987, Condition 2). Many

functions, including the Richards function that subsumes the exponential and logistic functions

given here (Richards, 1959), satisfy this requirement. Assume that for the parameter  assumed

to be in G and any positive scalar w, there is a parameter set ∗ also in G that satisfies the

following equality:

f∗, t  wf, t.

The implication of this property (Shapiro & Browne, 1987, Lemma 1) of f, t is that there is

a set of parameters, denoted here by , such that

f, t       (16)

because  is the set of first-order partial derivatives of f, t taken with respect to  (see

Browne, 1993, p 177). The parameter  can be obtained by solving the linear equation in (16).

For example, given that the logistic model for the mean response in (13) is invariant to a

constant scaling factor (see Browne & Du Toit, 1991),  can be obtained by solving the linear

equation in (16), resulting in   0,1, 0 ′. Note that although  contains some of the

elements in ,  ≠ . Then in the individual-level model,  is used as a substitute for the

mean function f, t. Thus, by substituting f, t with , the individual-level model in (14)
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is re-expressed as

yi    zi  e i     (17)

where again   0,1, 0 ′ and zi  z0i, z1i, z2i. ′ Letting i    zi, the model in (17)

further simplifies to

yi  i  e i.     (18)

Assuming that the mean response follows a nonlinear growth function, such as the logistic

growth model in (13) in which all growth coefficients enter the function in a nonlinear way,

the random coefficient i in the individual level model in (18) enters the model in a linear way.

The basis functions that define the matrix  are each based on functions that are nonlinear with

regard to all three of the parameters, 0, 1 and 2, but these coefficients are all fixed.

The random weights zi are assumed to be multivariate normal with expected values equal

to zero and covariance matrix :

zi  N0,

where  is a symmetric matrix of order k, and k is the number of random weights. Within

individuals, the residuals e i  e1i, . . . ,eni 
′ are assumed to be multivariate normal with

expected values equal to zero and covariance matrix Θ:

e i  N0,Θ

where Θ is a symmetric matrix of order n. Given the distributional assumptions for e i and zi

and assuming independence between them, the marginal mean and covariance structure of the

structured latent curve model are
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  

and

  ′  Θ,

respectively. The dimensions of  and  are n. Similar to all of the models presented

previously, the structure for Θ can take various forms.

Model interpretation. The fixed coefficients of the population-level model in (13), 0, 1

and 2, have two valid interpretations: First, they represent the typical characteristics of change

across the population. This is analogous to the fully and partially nonlinear mixed-effects

models and the nonlinear latent curve model of Meredith and Tisak (1990). Similar to the

nonlinear latent curve model and the partially nonlinear mixed-effects model, the fixed

parameters of the structured latent curve model can be also interpreted as the features that

describe change in the mean longitudinal response. Thus, the structured latent curve model also

possesses the property of dynamic consistency. In this way, the fully nonlinear mixed-effects

model is unique to these other models because the fixed coefficients of a fully nonlinear

mixed-effects model do not necessarily share this interpretation.

Estimation

The random weights i that combine with  to define the individual-level model of a

structured latent curve model in (18) enter the model in a linear way. The nonlinear parameters

of , , are fixed. Because the model is linear in the random weights, estimation of a structured

latent curve model can rely on methods that are also used to fit linear mixed-effects models,

partially nonlinear mixed-effects models, and the nonlinear latent curve model of Meredith and
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Tisak (1990). This is different from the estimation requirements of a fully nonlinear

mixed-effects model that includes a random nonlinear parameter. That is, for a model that

includes a random nonlinear parameter, it is not possible to express a likelihood function in

such a way as to analytically solve for the model parameters, and alternative methods of

estimation are required. Solutions to this problem include methods that use approximations to a

loglikelihood function, including a first-order Taylor series approximation, and numeric

approximation methods, such as Gaussian quadrature (Davidian & Giltinan, 1995; Pinheiro &

Bates, 1995). Conversely, for a structured latent curve model, a loglikelihood can be

analytically expressed (as in (12)) and differential calculus applied to obtain an analytic

solution for the parameters. This is an important aspect of the structured latent curve model

because it indicates that estimation does not require the more complex methods that are

typically used to fit fully nonlinear mixed-effects models. Further, the first-order linearization

method, as described earlier for estimation of the nonlinear latent curve model of Meredith and

Tisak and partially nonlinear mixed-effects model, and methods that are otherwise used to

estimate fully nonlinear mixed-effects models, such as Gaussian quadrature, can yield

equivalent results if applied in the estimation of a structured latent curve model. This is in

contrast to the estimation of a model that includes random nonlinear parameters, as these two

estimation approaches can yield different results.

As was briefly noted earlier, a first-order Taylor expansion can be used to approximate a

nonlinear function of a fully nonlinear mixed-effects model, but this is not the case for models

that are linear in the random effects because the first-order Taylor expansion is equal to the

original function. To see this, apply the first-order Taylor series expansion proposed by Beal

and Sheiner (1982) to the partially nonlinear mixed-effects model in (8) and the fully nonlinear
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mixed-effects model in (1), both defined using the exponential growth function. The first-order

linearization of the exponential growth model in (8) for individual i would be

fi,,bi,Timet  1i − 1i − 0iexp−Timet

 1 − 1 − 0exp−Timet  b0if0
′  b1if1

′

 fi,,bi,Timet,

where

fi,,bi,Timet
∂0i bi0

 f0′  exp−Timet,

fi,,bi,Timet
∂1i bi0

 f1′  1 − exp−Timet

with the expressions evaluated at b0i  0 and b1i  0. Algebraically, the Taylor expansion is

the same as the original function, fi. This is not the case for the Taylor series expansion of the

fully nonlinear mixed-effects model in (1). The Taylor expansion of the exponential function

in (1) is no longer exponential but an approximation. Its expansion is

fi,bi,Timet  1i − 1i − 0iexp−2iTimet

≈ 1 − 1 − 0exp−2Timet  b0if0
′  b1if1

′  b2if2
′

where the first-order partial derivatives of fi with respect to each parameter is as it was for the

partial nonlinear model with the addition of the partial derivative of fi with respect to β2i

fi,bi,Timet
∂2i bi0

 f2′  1 − 0Timet exp−2Timet

with these expressions evaluated at b0i  0, b1i  0, and b2i  0. Clearly, the Taylor series

approximation to the exponential function of (1) is not the same as the original function.

Interestingly, the expected value of both Taylor series expansions lead to the same mean
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exponential function, however, the individual functions will not be the same; and for the fully

nonlinear function in (1), the result is not the exponential function.

Empirical Example

To show that fitting a structured latent curve model using either the first-order

linearization method or Gaussian quadrature can yield the same ML estimates, the quantitative

learning data are again used. The syntax for fitting the structured latent curve model using the

logistic growth model given in (13) and using the first-order linearization method of estimation

is:

PROC NLMIXED DATAqrtdata GCONV0 METHODfiro;

TITLE1 ‘Structured latent curve model using a logistic growth model’;

PARMS theta08 theta116 theta2.7 var010 cov101 var112 cov20.1 cov21.1

var2.3 s2e3;

n0theta0z0; n1theta1z1; n2z2;

meanf  (theta0*theta1)/(theta0  (theta1-theta0)*exp(-theta2*t));

basis0  (theta0 - exp(-theta2*t)*meanf) / (theta0  (theta1-theta0)*exp(-theta2*t));

basis1  (theta1 - (1-exp(-theta2*t))*meanf) / (theta0  (theta1-theta0)*exp(-theta2*t));

basis2  ((theta1-theta0)*t*exp(-theta2*t)*meanf) / (theta0 

(theta1-theta0)*exp(-theta2*t));

predv n0*basis0  n1*basis1  n2*basis2;

MODEL qrt ~NORMAL(predv,s2e);

RANDOM z0 z1 z2 ~NORMAL ([0,0,0], [var0,cov10, var1,cov20,cov21,var2])

SUBJECTsubid;
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RUN;

In the syntax for fitting the structured latent curve model, the coefficients n0 and n1 are

defined as a sum of a fixed effect and a random effect: n0theta0z0 and n1theta1z1. The

coefficient n2 is defined only by the random effect z2. The fixed rate parameter theta2 is only

used to define the basis functions, basis0, basis1 and basis2. The predicted value, given by

predv, is the weighted sum of the three basis functions. The response, qrt, is assumed to be

normally distributed with predicted value predv and a residual variance of s2e. The

trial-specific residual is assumed to be independent between individuals and between trials

with constant variance s2e. The random-effects, z0, z1 and z2 are assumed to be multivariate

normal with means equal to 0 and covariance matrix defined by the elements var0, cov10,

var1, cov20, cov21 and var2, where var0, var1 and var2 are the variances of the

individual-specific weights, and their covariances are denoted by cov10, cov20 and cov21.

To fit the model using the default method of estimation, adaptive Gaussian quadrature, no

METHOD option is specified. The results from fitting the model using the two estimation

methods are given in the first two columns of Table 2. As shown in Table 2, the estimates and

their standard errors are equivalent (to at least 4 decimal places), and model fit is the same.

Thus, no matter the choice of these two estimation methods the same results are obtained, as

expected. The computing times for the two methods were comparable. Using the starting

values for the parameters in the syntax given earlier, fitting the model using the FIRO method

required 2.1 seconds of CPU processing time and using the default method of adaptive

Gaussian quadrature required 5.6 seconds of CPU processing time. Although computers can

differ in their processing time, and as a result, the time reported here can differ from other
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computers, a report of the processing times between methods is of value. That is, given the

negligible difference in processing times between methods of estimation, either method might

be considered reasonable to apply in practice.

Comparing a Structured Latent Curve Model and a Fully Nonlinear Mixed-Effects

Model

A structured latent curve model is, of course, one option for describing longitudinal data.

By also fitting a nonlinear mixed-effects model to a set of data, it is possible to study the

sensitivity of the fixed effects of a growth model to assumptions that are made about the

between-subject variation. That is, under a nonlinear mixed-effects model, the curves of all

individuals are assumed to follow the same functional form, and between-subject variation is

characterized by the variation of the random coefficients about their corresponding fixed

values (Davidian & Giltinan, 2003). Under a structured latent curve model, the mean response

is assumed to follow a specific function, and the curves of the individuals vary with regard to

their dependencies on the set of common basis functions, and so the individual curves may

actually depart from the functional form that is assumed for the mean response. For a

structured latent curve model the between-subject variation is characterized by the variation of

the weights that are applied to the common basis functions (Blozis & Harring, 2015).

To show how these two models can differ in their characterization of longitudinal data, the

same logistic growth function that was earlier used in the structured latent curve model to

describe the average performance measures was also used to define the individual-level model

of a fully nonlinear mixed-effects model. The fixed effects estimates of a nonlinear

mixed-effects model are provided in the last two columns of Table 2. Estimates are based on a

non-adaptive Gaussian quadrature method because no solution could be obtained using the
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default adaptive Gaussian quadrature method. The non-adaptive method was used with 30

quadrature points (for a general discussion on specifying the number of quadrature points

when using adaptive versus nonadaptive Gaussian quadrature, see Lesaffre & Spiessens, 2001,

and Pinheiro & Bates, 1995). As shown in Table 2, the parameter estimates and model fit are

the same for the structured latent curve model using both methods of estimation (first-order

linearization method and adaptive Gaussian quadrature), as well as the nonlinear mixed-effects

model estimated using the first-order linearization method. That is, the fully nonlinear

mixed-effects model estimated using the first-order linearization method returned equivalent

results to the structured latent curve model. This is due to the fact that the first-order

linearization of the nonlinear mixed-effects model is based on the same first-order Taylor

expansion that is used to define the structured latent curve model at the individual level. This

implies that if one wishes to fit a structured latent curve model and avoid the step of expressing

the analytic derivatives that define the elements of the basis functions, then one only needs to

express the mean function and use the first-order linearization method for estimation.

Parameter estimates and model fit differ, however, for the fully nonlinear mixed-effects

model that was estimated using Gaussian quadrature. Figure 2 displays the fitted curves at the

population level based on the structured latent curve model and the fully nonlinear

mixed-effects model estimation using Gaussian quadrature, with the curves displayed along

with the observed means at each trial block. As shown the figure, the structured latent curve

model provides a better representation of the sample means relative to the fully nonlinear

mixed-effects model. At the population level, the structured latent curve model specifies that

the mean response follows the logistic function; conversely, at the population level of the fully

nonlinear mixed-effects model, the curve represents the typical response that is not necessarily
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equivalent to the mean response.

Differences in model fit and estimated parameters of a fully nonlinear mixed-effects

model using these two methods of estimation have been noted in the documentation for PROC

NLMIXED (Littell et al., 2006). As shown here, however, the estimates of a nonlinear

mixed-effects model obtained using the first-order linearization method can, in fact, provide

estimates of a different model. Specifically, if a fully nonlinear mixed-effects model is

estimated using a first-order linearization method, then the interpretation of the model aligns

with that of a structured latent curve model. Specifically, if a growth function is invariant to a

constant scaling factor, a fully nonlinear mixed-effects model estimated using the first-order

linearization method will yield results that are identical to that of a structured latent curve

model. Note that if the growth function is not invariant to a constant scaling factor, a first-order

linearization method of estimation of a nonlinear mixed-effects model will simply serve its

purpose of providing an approximation to the function. It is worth noting that the models

considered in Preacher and Hancock (2015) are variations of a structured latent curve model.

Unlike the structured latent curve model of Browne (1993) and Browne and Du Toit (1991),

their models do not require that the chosen mean function be invariant to a constant scaling

factor. As a result, the individual-level model provides an approximation to the individual’s

true response trajectory similar to the approximation that results when using a Taylor

expansion to approximate the individual-level response under a fully nonlinear mixed-effects

model.

It is also notable that the processing time for the fully nonlinear mixed-effects model

estimated using the Gaussian quadrature was relatively intensive. Using the starting values for

the parameters in the syntax given earlier, fitting the nonlinear mixed-effects model using
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Gaussian quadrature required 2 hours, 11 minutes and 20.7 seconds of CPU processing time.

The structured latent curve model fitted using either method of estimation, as well as the fully

nonlinear mixed-effects model that was fitted using the first-order linearization method, all

required less than 10 seconds of CPU processing time.

A Note on Population-Average Models

Population-average models are used for the analysis of longitudinal data when the focus of

study is on the population rather than the individual (Liang & Zeger, 1986; Zeger & Liang,

1986). The objective is generally to describe a variable over time at the population level, that

is, to describe the average behavior across the population. Thus, the population averaged

response is modeled directly. The covariance structure represents an aggregate of the patterns

of association in the responses that are due to the combined influences of within-individual and

between-individual sources. So the model does not include random effects that are specific to

the individual. Different forms of the covariance structure can be considered to address the

patterns of variation and covariation, such as using an unstructured covariance matrix or a

first-order autoregressive structure (see Davidian & Giltinan, 2003).

A popular method of estimation of population-average models are generalized estimating

equations (GEE) (Liang & Zeger, 1986; Zeger & Liang, 1986). The SAS macro %nlinmix is

available for fitting these models using the GEE approach described in Zeger, Liang, and

Albert (1988) (see Littell et al., 2006, Chapters 14 and 15). The macro is available in SAS 8

and subsequent versions and is available for download through SAS support. The macro relies

on two SAS procedures, PROC NLIN and PROC MIXED. PROC NLIN is a procedure for

fitting nonlinear regression models that include only fixed effects. PROC MIXED is a

procedure for fitting linear mixed-effects model that can include fixed and random effects that
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enter the model in a linear way. The %nlinmix macro makes it possible to fit nonlinear

mixed-effects models, as well as population-average models, and allows for the same selection

of covariance structures that are available as options in PROC MIXED using the REPEATED

statement. Because only a single covariance structure is used to account for variances and

covariances in the data of a population-average model, no RANDOM statement is used as it is

in mixed-effects models to address individual-specific coefficients.

The discussion of population-average models is relevant to the discussion of the structured

latent curve model because the mean response is modeled directly in both models. The

interpretation of the population-level model of the structured latent curve model is analogous

to that of a population-average model in that both describe the average response using a

specific function. That is, one interpretation of the fixed effects of a structured latent curve

model is that they represent the characteristics of change in the average response, and this is

also the case for a population-average model. A key difference between a population-average

model and a structured latent curve model is in how the two define the covariance structure. In

a population-average approach, a single covariance structure aggregates within- and

between-person sources of variation and covariation into a single matrix. Conversely, in a

structured latent curve model the covariance structure partitions patterns of association in the

response according to within- and between-person sources. Thus, although the averaged

response is modeled directly by a growth function, similar to a population-average model, the

structured latent curve model also includes an individual-level model that is characterized by

individual-specific weights and a separate component to characterize within-individual

variation.

To illustrate differences in a population-average model and a structured latent curve
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model, a population-average model was fit to the learning data assuming three different

covariance structures: unstructured, a first-order autoregressive structure with homogeneous

variances, and a first-order autoregressive structure with heterogeneous variances. These

structures were chosen because they allowed for correlations between the residuals but in

different ways. Two of the structures, namely the unstructured covariance matrix and the

first-order autoregressive with heterogeneous variances, also allowed for the variances to be

different across trials. Other structures could be considered. The unstructured covariance

matrix means that all of the variances of the residuals and the covariances between them are

estimated without any constraints in their values. Using the %nlinmix macro, this structure is

available using the option TYPEUN. For the learning data, this results in a total of

1212 − 1/2  78 unique variances and covariances to be estimated. A first-order

autoregressive residual structure with homogeneous residual variances allows for the residuals

between adjacent time points to covary and assumes that the magnitude of the correlation

decreases with an increase in distance between time points with the assumption that the

variances are constant across time. Specifically, the i, jth element of the covariance matrix  is

given by 2 |i−j |, where 2 is the common variance of the residuals across time. Using the

%nlinmix macro, this structure is available using the option TYPEAR(1). For the learning

data, this results in a total of 2 parameters (2 and ) to be estimated. A first-order

autoregressive residual structure with heterogeneous residual variances allows for the residuals

between adjacent time points to covary and assumes that the magnitude of the correlation

decreases with an increase in distance between time points, and in addition, allows the residual

variances to differ across time. Specifically, the i, jth element of the covariance matrix  is

given by ij |i−j |, where the covariance is given by the product ij. Using the %nlinmix
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macro, this structure is available using the option TYPEARH(1). For the learning data, this

results in a total of 12  1 parameters (i for i  1, . . . , 12 and ) to be estimated.

These options for the covariance matrix are available using the REPEATED statement

when employing the SAS macro %nlinmix. The estimated fixed effects of the

population-average model are given in the last three columns of estimates in Table 3. For

comparison, the structured latent curve model was fit again to the learning data assuming

alternative within-person covariance structures that were described in Harring and Blozis

(2014): a first-order autoregressive structure with homogeneous variances and independent

residuals with heterogeneous variances. Estimates reported in Table 2 for the structured latent

curve model assuming that the residuals are independent with constant variance are repeated in

the first column of results in Table 3 for comparison purposes.

With regard to model fit, the structured latent curve model that assumes that the residuals

have different variances across the trial blocks has the best fit, as indicated by this model

having the smallest values of the AIC and BIC. Thus, this is an improvement over the first

version of the model that was applied in which the residual variances were assumed to have

constant variance across trial blocks and also provides a better fit than a model that assumes

that the residuals follow a first-order autoregressive structure. The best fitting

population-average model is that which assumes that the overall covariance structure is

unstructured. As shown, the estimated fixed effects between this model and the best-fitting

structured latent curve model are not appreciably different, and so similar conclusions about

the mean performance scores might be made. What is different about the two models is that the

structured latent curve model breaks down the covariance structure into within-individual and

between-individual components, whereas the population-average model pools this information
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into a single matrix. Taking into account model parsimony, the structured latent curve model

gives superior fit overall and may be preferred because the model specifically addresses

change in the response that is unique to the individual.

Discussion

Understanding individual differences in psychological and behavioral measures is central

to behavioral research. Longitudinal data allow researchers to expand the study of individual

differences to also allow for the study of within- and between-person change. Longitudinal

data provide the means to study how, within person, behaviors may change over time and how

individuals may vary from one another in change. Depending on the scale of measurement of

the response, as well as the form of change in the response over time, there are several options

for longitudinal data analysis. Mixed-effects models and latent curve models offer many

options for analyzing longitudinal data, including options for analyzing both normal and

non-normal response data, as well as various forms of change.

Mixed-effects models and latent curve models share a common goal of providing for the

simultaneous study of within-person variation and between-person variation. If a mixed-effects

model and a latent curve model are linear in their parameters, then the two approaches can be

used to specify models that are equivalent and parameter estimates will be equal given the

same set of data and the same model assumptions (Bauer, 2003). If a model is nonlinear in its

parameters, however, there can be important differences between the two approaches. This

paper was informative in showing that a partially nonlinear mixed-effects model, a particular

version of a nonlinear mixed-effects model that restricts the random effects to enter the model

in a linear manner (nonlinear effects must be fixed), and the latent curve model of Meredith

and Tisak (1990) are equivalent, and given that the random effects of the models can only
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enter the model in a linear manner, the estimation requirements of the models match those of

linear mixed-effects models. This paper also showed that a structured latent curve model, a

special case of a nonlinear latent curve model that allows for individual differences in all

model coefficients, is in fact quite different from a nonlinear mixed-effects model, both in its

interpretation and with regard to its estimation requirements. This paper also showed that if a

nonlinear mixed-effects model is defined using a growth function that is invariant to a constant

scaling factor and a first-order linearization method of estimation is applied, the resulting

estimates will actually be those of a structured latent curve model.

The individual-level model of a structured latent curve model is represented by a

decomposition of a set of common basis functions and a set of random effects that are unique

to the individual. This is done by using a first-order Taylor expansion of a common function

taken with respect to the coefficients of the function that is then weighted by

individual-specific coefficients. The first-order linearization method of estimation relies on this

expansion. The first-order linearization method that is employed to estimate nonlinear

mixed-effects models is essentially this approach, and so the estimates of a nonlinear

mixed-effects model using this linearization method will be equivalent to defining a structured

latent curve model, assuming that the function is invariant to a constant scaling factor. This is

an important results because it indicates that the choice of estimation method for a nonlinear

mixed-effects model can yield estimates of a model that was not intended for the data. This is

not the case for the nonlinear latent curve model of Meredith and Tisak (1990) and a partially

nonlinear mixed-effects model, as well as the structured latent curve model, because these

models can all be expressed using a first-order Taylor expansion to define the individual-level

model, and the expansion does not represent an approximation to the function but rather is a
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direct re-expression of the function.
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Appendix

Distinguishing Between Linear and Nonlinear Parameters of a Growth Model

The distinction between linear and nonlinear parameters of a growth model is provided here. A

parameter enters a function in a nonlinear way if the first-order partial derivative of the

function taken with regard to that parameter results in a function that is nonlinear with regard

to that parameter (Bates & Watts, 1988). Conversely, a parameter enters a function in a linear

way if the first-order partial derivative of the function taken with regard to that parameter

results in a function that is linear with regard to that parameter.

From this it is easy to show that polynomial functions, often used to approximate

nonlinear relationships, are considered within the class of linear models because polynomial

functions are linear with regard to their parameters. Consider, for instance, a cubic function, a

polynomial function of degree 3, that can be used to model a nonlinear relationship between X

and Y:

Y  fX  0  1X  2X2  3X3

Although the relationship between X and Y is nonlinear in shape, the function is linear in its

parameters because all first-order partial derivatives of the function return functions that are

linear with respect to each of the parameters of the function, even though the last of the four

functions is nonlinear with regard to X:
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∂fX
∂0

 1

∂fX
∂1

 X

∂fX
∂2

 2X

∂fX
∂3

 3X2.

In a nonlinear model, at least one of coefficients of the model enters in a nonlinear way.

Burke, Shrout, and Bolger (2007), for instance, applied a nonlinear mixed-effects model to

measures of adjustment to spousal loss. In one model, a measure of depressive symptoms

measured over time was assumed to follow a two-level model (a modified form of the function

presented in Burke et al.):

yij  1i − 1i − 0iexp−2itij  ij     (a)

where 1i was the asymptotic response representing the level of depressive symptoms assumed

to remain long after the loss, 0i was the level of depressive symptoms at the time of loss (with

t, a measure of time, centered at the time of loss), and 2i along with tij assumed to govern the

rate of change over time. Each of the coefficients, 0i, 1i, and 2i, was a sum of a fix and

random effect (e.g., 0i  0  b0i) with the latter allowing the particular features relating to

the bereavement response to among between individuals.

To show that the model for depressive symptoms in (a) is nonlinear with regard to one of

its parameters, the first-order partial derivatives of the function taken with respect to each of

the coefficients are given here:
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∂f, tij
∂0i

 exp−2itij

∂f, tij
∂1i

 1 − exp−2itij

∂f, tij
∂2i

 1i − 0itijexp−2itij

As shown, the first two of the first-order partial derivatives taken with regard to 0i and 1i,

namely
∂f,tij

∂0
and

∂f,tij

∂1
, result in nonlinear functions with regard to the third coefficient, 2i,

but not the two coefficients themselves. Thus, the function in (a) is linear with regard to both

0i and 1i. The last of the first-order partial derivatives that is taken with regard to 2i,

namely
∂f,tij

∂2
, results in a nonlinear function of 2. Thus, the function in (a) is nonlinear with

regard to 2i but not 0i and 1i.


